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Abstract: I suggest that the factor pj in the pocket-based measure of the multiverse, Pj =

pjfj, should be interpreted as accounting for equilibrium de Sitter vacuum fluctuations,

while the selection factor fj accounts for the number of observers that were formed due to

non-equilibrium processes resulting from such fluctuations. I show that this formulation

does not suffer from the problem of freak observers (also known as Boltzmann brains).
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1. Introduction

The simplest interpretation of the observed accelerated expansion of the universe is that it

is driven by a constant vacuum energy density, ρv = const, which is about 3 times greater

than the density of nonrelativistic matter. Ordinary matter is being diluted, while the

vacuum energy density remains the same, and in another 10 billion years or so the universe

will be compltely dominated by the vacuum. The following evolution of the universe is

accurately described by de Sitter space.

It has been shown by Gibbons and Hawking [1] that the state of quantum fields in de

Sitter space is similar to a thermal state with a characteristic temperature TGH = H/2π,

where

H = (8πGρv/3)
1/2 (1.1)

is the de Sitter expansion rate. For the observed value of ρv, the Gibbons-Hawking temper-

ature is extremely low, TGH ∼ 10−29 K. Nevertheless, interesting things will occasionally

pop out of the vacuum as quantum fluctuations, at a nonzero rate per unit spacetime

volume. An intelligent observer, like a human, could be one such thing. Or, short of

a complete observer, a disembodied brain may fluctuate into existence, with a pattern

of neuron firings creating a perception of being on Earth and observing the CMB radia-

tion. Of course, the nucleation rate ΓF of such freak observers (also known as Boltzmann

brains [2 – 4]) is extremely small [5 – 7]. But the important point is that it is nonzero.

De Sitter space is eternal to the future, so no matter how small ΓF is, freak observers

will eventually outnumber regular observers who have ever lived in the universe [8 – 10].

Regular observers are formed as a result of non-equilibrium processes which started at the

big bang and will eventually end when the universe thermalizes at the temperature TGH.

The total number of such observers that will exist in a fixed comoving volume is finite.

On the other hand, the cumulative number of freak observers grows unboundedly with

time. (In fact, it grows exponentially, since the corresponding physical volume grows as

exp(3Ht).) Then the question is: Why are we not freak observers? (Assuming that we

believe we are not.)
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This issue has been recently discussed by Page [9], who concluded that the least

unattractive way for us to avoid being freaks is to require that our vacuum should be

rather unstable and should decay within a few Hubble times of the vacuum domination,

that is, in 20 billion years or so.

Before accepting such a drastic conclusion, we need to analyze the situation in some

more detail. Two important facts that need to be taken into account are (i) that our local

universe appears to be a product of cosmic inflation and (ii) that inflation is generically

eternal. Then bubbles of high-energy false vacuum can nucleate in our low-energy vac-

uum [12]. Such bubbles become sites of eternal inflation, producing an infinite number

of pocket universes like ours, each containing an infinite number of observers [13]. The

nucleation rate of false vacuum bubbles may be much lower that that of freak observers.

But considering that each bubble nucleation yields an infinite number of regular obsevers,

one might conclude that regulars totally outnumber the freaks [14].

The trouble is that in an eternally inflating universe the numbers of both types of

observers are infinite. They can be meaningfully compared only if one adopts some pre-

scription to regulate the infinities. A related issue, which has recently attracted much

attention, is the calculation of probabilities for different vacua in multiverse models, also

known as the measure problem. A number of prescriptions have been proposed, and one

can try to apply them to the problem of freak observers. A “holographic” measure [15],

which restrict consideration to the part of the universe within the causal diamond of a

single observer, can resolve the problem if our vacuum is sufficiently unstable, enough for

the vacuum decay to prevent freak domination [10]. Some ways to avoid the problem using

a measure based on a globally defined time coordinate have been discussed in [11, 16].

Here, I am going to address the problem of freak observers in the context of the pocket-

based measure, which was introduced in [17] and which satisfies the physically reasonable

requirements of gauge-invariance and independence of initial conditions (see also [18]). In a

recent paper, Bousso and Freivogel argued that this measure predicts freak domination and

should therefore be ruled out. In fact, the formulation of the measure prescription in [17]

disregarded the existence of freaks and was therefore incomplete. With freaks taken into

account, the prescription as it stands gives meaningless infinite answers for the probabilities.

I am going to suggest how the problem can be fixed by clarifying the formulation of the

pocket-based measure.

2. The pocket-based measure

The pocket-based prescription for the measure is a two-step procedure. The probability Pj

for a randomly picked observer to be in a pocket of type j is given by the product

Pj = pjfj, (2.1)

where pj is an abundance of bubbles (pockets) of type j and fj is the selection factor

characterizing the relative number of observers in different pockets. To calculate the bubble

abundance pj , one first chooses a future-directed congruence of geodesics and a segment

of a spacelike hypersurface Σ which is crossed by that congruence. Each geodesic will
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typically cross a number of bubbles before encountering a terminal bubble having negative

or zero vacuum energy. The geodesics project bubbles in the future of Σ back onto Σ, and

the prescription of [17] is to find what fraction of all bubbles is of type j, counting only

bubbles whose projected size is greater than ε, and then take the limit ε → 0,

pj = lim
ε→0

Nj(> ε)

N(> ε)
. (2.2)

The resulting pj are independent of the choice of the geodesic congruence and of the

hypersurface Σ. The bubble count is dominated by the bubbles nucleating in the asymptotic

future, so the result is independent of the initial conditions at the onset of inflation. (An

equivalent prescription for pj has been suggested in [19].)

The prescription for the selection factor fj is that it is given by the total number of

independent observers that evolve in a fixed comoving volume,

fj ∝ R3

∫ ∞

τin

nj(τ)a3
j (τ)dτ. (2.3)

Here, R is a fixed comoving length scale, the same for all bubbles, nj(τ) is the average

number of observers produced in a pocket j per unit physical volume per unit time and

aj(τ) is the scale factor in that pocket. The time coordinate τ is the proper time in the

standard open FRW coordinates inside the bubble. The initial time τin is arbitrary, as

long as it is chosen small enough. (At small τ all bubble spacetimes are identical, with

a(τ) = τ .) Of course, the FRW bubble universes are infinite, and we could take the limit

R → ∞. But the constant factor R3 drops out of the relative probabilities, so the value we

choose for the length scale R is unimportant.

In all bio-friendly bubbles, there should be a period of internal inflation, characterized

by a large expansion factor Zj À 1. After the vacuum energy is thermalized, a certain

number N ∗
j of observers will evolve per unit thermalized volume; its value will depend on

the local parameters of the low-energy physics. Counting only regular observers, as it was

done in [17], we can write

fj ∼ Z3
j N

∗
j . (2.4)

But now we know that if the vacuum energy is positive inside the bubble, then, apart

from the regular observers, there are freak observers who nucleate at a constant rate per

unit spacetime volume. This means that, if the freaks are included, then nj(τ) → const

and eq. (2.3) gives fj → ∞. Moreover, as already mentioned in the Introduction, bubbles

of false vacuum will also nucleate at a constant rate, each bubble contributing infinite

numbers of both the regulars and the freaks.

Clearly, the prescription (2.3) is not acceptable as it stands. The intent of the original

formulation in [17] was to count only regular observers who evolve in the wake of bubble

nucleation. But the question is: On what basis can we discriminate against the freak

observers? It is not enough to say that they are formed by quantum fluctuations. In models

of cosmic inflation, galaxies and other cosmic structures owe their eistence to quantum

fluctuations, so human observers may share the fuzzy quantum origin with the freaks. In

the next section I will suggest a possible way of regulating the infinity in eq. (2.3).
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3. Getting rid of freak observers

My proposal is that there should be a sharp division between the kinds of objects counted

in pj and those counted in fj. pj counts the objects like bubbles, which nucleate in a

vacuum at a constant rate. These are equilibrium vacuum fluctuations in de Sitter space.

fj counts observers that arise due to non-equilibrium processes in the wake of a quantum

fluctuation of type j. This can still be expressed by eq. (2.3) if we make the replacement

nj(τ) → ñj(τ) = nj(τ) − n
(eq)
j . (3.1)

Here, nj(τ) is the total production rate of observers, n
(eq)
j = const is the equilibrium rate at

which they are produced by quantum fluctuations in a de Sitter vacuum, and the difference

ñj(τ) is the production rate due to non-equilibrium processes. With this replacement, the

integral in (2.3) is convergent and can still be estimated by eq. (2.4).

To put it slightly differently, the events counted in pj are uncaused, random, equilibrium

fluctuations. Such fluctuations occur at a fixed rate per unit spacetime volume in a de Sitter

vacuum. The projected size of a freak fluctuation does not exceed the projected size of

a bubble that would nucleate at the same spot (the latter size is given by the comoving

horizon at the time of nucleation). Then it follows from the definition of the pocket-based

measure that the freak abundance pF is bounded from above by the abundance of bubbles

having the same nucleation rate in the same vacuum [20]. Different types of freaks in

different vacua will, of course, have different abundances pFj. The important point for our

discussion here is that all of these abundances are bounded, pFj < ∞.

The factor fj assigns a weight to vacuum fluctuations, based on the average number of

observers formed as a result of non-equilibrium processes caused by a fluctuation of type

j. A fluctuation producing one isolated freak observer gets a weight of 1. Even if there is

a huge fluctuation producing a large number of freaks, the weight will always be finite. On

the other hand, a bio-friendly bubble produces an infinite number of observers and thus

has an infinite weight. Formally, this can be accounted for by taking the limit R → ∞ in

eq. (2.3). As a result, freak observers get a vanishing relative weight, while the relative

weights of the bubbles are independent of R. Now, with pFj < ∞ and fFj → 0, it is clear

that freaks do not contribute to the measure.

4. Discussion

The purpose of this note is to clarify the pocket-based measure (2.1) of ref. [17]. My

proposal is that the factor pj should be interpreted as the abundance of equilibrium vacuum

fluctuations of a given type. The selection weight fj is proportional to the average number

of observers formed due to non-equilibrium processes resulting from such fluctuations.

Freak observers are produced either individually or in finite groups, while each bio-friendly

bubble produces an infinite number of observers. Thus, freak observers have a vanishing

relative weight and do not contribute to the measure, even though their nucleation rate

may in some cases be higher than that of the bubbles.
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I should finally mention some open issues. The pocket-based measure, as it is presently

formulated, assumes that bubbles do not collide with one another. Also, the current

formulation cannot be directly applied to models where pockets are formed by quantum

diffusion. Some ideas toward extension to this class of models have been discussed in [17].

The pocket-based measure does account for bubble formation within bubbles. However,

it is tacitly assumed that secondary bubbles (s-bubbles) do not interfere with the evolution

of observers in the primary bubble (p-bubble). This should be a good approximation

if the s-bubble formation rate is very low. The production rate of observers in eq. (3.1)

approaches zero when the stars die out and other non-equilibrium processes in the p-bubble

come to a halt. We assume that s-bubbles that nucleate during the period when ñp(τ) is

substantially different from zero affect only a small fraction of volume in the open FRW

universe of the p-bubble. Inclusion of this effect should result in a slight renormalization

of the selection factor fp.

The formation rate of freak observers is likely to be enhanced for some period of time

τ inside the bubbles, either due to thermal fluctuations (while the temperature is still

higher than TGH) or to quantum fluctuations induced by time-varying fields and other

non-equilibrium processes in the wake of bubble nucleation. This is good news for the

freaks: their formation rate, given by eq. (3.1), is non-zero after all. However, just as

in the case of regular observers, this rate approaches zero at large τ , and the fraction of

freaks relative to the regular observers is likely to be very small. The nucleation rate of

s-bubbles may also be enhanced at early times. This will probably result in some additional

renormalization of ps and fp. This issue requires further study.
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